Все о теплопроводности стали

Содержание
  1. Что это такое?
  2. От чего зависит?
  3. Показатели
  4. Значение в быту и производстве
  5. Сравнение с теплопроводностью других материалов

Теплопроводность стали имеет решающее значение для систем теплообмена, так как от этого показателя зависит, насколько качественно заработает теплообменник. Тепло, накапливающееся в одном месте, способно вывести теплоноситель или саму основу теплообменника из строя.

Что это такое?

Теплопроводность – физическая величина, основанная на законе теплового и энергетического равновесия в природе. Если в каком-то участке материал холоднее хоть на градус, перенос тепловой энергии между молекулами и атомами быстро устранит эту разницу. Способность передавать тепло между металлическими и деталями, изготовленными из сплавов, широко применяется в работе функциональных узлов и целых устройств на их основе, используемых в народнохозяйственной деятельности. В качестве примера – кипятильник, спираль в котором нагревается при прохождении через неё электрического тока, передавая тепло на его внешние слои, а затем – к нагреваемой воде.

Теплопроводность и термосопротивление противоположны друг другу. Первая отвечает за быстрый (насколько это возможно) перенос тепла, второе – наоборот, за противодействие такому переносу.

К примеру, газы обладают низкой теплопроводностью и высоким термосопротивлением, ряд жидкостей и твёрдых частиц – приблизительно похожими значениями этих двух параметров, а металлы – высокой теплопроводностью и низким термосопротивлением.

Измеряется теплопроводность в ваттах, делённых на метр, помноженный на градус. Величина теплопроводности в справочниках указывается именно в таких единицах.

От чего зависит?

Зависимость теплопроводности стали и любых иных сплавов определяется значениями ряда параметров: плотность материала, химический состав, структура (наличие пор), размеров теплопроводящего пространства, которыми оно ограничено. Для металлов эта зависимость определяется строением кристаллической решётки, например, у стали и алюминия оно разное.

Кстати, спокойная сталь обладает лучшей теплопроводностью, чем полуспокойная или кипящая: первая имеет устоявшуюся, очень плотную структуру.

Не менее важной является зависимость значения теплопроводности от температуры. Дело в том, что недостаточно проводящий материал, нагреваясь, может столкнуться с возрастающим из-за снижения теплопроводности темпом накопления тепла. Возникает так называемый лавинообразный эффект: чем больше накаляется сталь, тем больше ускоряется скорость её нагрева. Элемент, в котором не рассчитана теплоотводящая способность, при перегреве попросту обгорает, в ряде случаев – расплавляется.

Однако теплопроводность стали или любого другого сплава – либо одиночного металла – не зависит в полной мере от конкретных свойств материала. Важно и то, какие элементы, детали рядом с ним соседствуют. Если, к примеру, на поверхность процессора нанести вместо теплопроводящей пасты простой клей и «посадить» на него радиатор, то сама радиаторная пластина будет нагреваться от горячего процессора незначительно, не обеспечивая в полной мере необходимый теплоотвод.

Стоит вам программно загрузить процессор до околопредельных значений, через несколько минут он перегреется и выгорит.

Можно, конечно, радиатор посадить без теплопроводящих паст, но при слишком плотной посадке либо треснет корпус процессора, либо, наоборот, при недостаточном контакте процессорной и радиаторной поверхностей наблюдается тот же самый эффект «недоотвода» тепла, несмотря на высокую теплопроводность стали или алюминия, из которого изготовлен радиаторный модуль. Эту особенность при ремонте и замене комплектующих микроэлектроники необходимо иметь в виду.

Показатели

Для стали 09Г2С значение теплопроводности колеблется от 33 при 20 градусах до 20 при нагреве до 400 градусов.

Для стали 12Х18Н10Т теплопроводность изменяется от 15 при 20 градусах до 29 при нагреве до 800 градусов: здесь прослеживается обратная тенденция – не уменьшения, а, наоборот, увеличения (в ваттах на метр, помноженный на каждый градус изменения температуры).

Если же привести конкретные значения для разных сортов разноуглеродистых сталей, то они расположились следующим образом.

  1. Сталь 20 при температуре 27-1200 градусов – 86-30 Вт/м*градус (тенденция к снижению).

  2. Сталь 45 при 27-527 градусах – 79-30.

  3. Сталь 3: при температуре 100-700 – значение в 55-30.

  4. Ст3 (спокойная, группы В) – аналогичные предыдущему варианту значения.

  5. Сталь 10: при 27-527 градусах – 83-44.

  6. Сталь 40 обладает двойной зависимостью с экстремумом: при температуре 100, 800, 900, 1000, 1100 её теплопроводность снижается от 51 до 25, а при дальнейшем нагреве от 1200 до 1400 градусов она, напротив, растёт от 26 до 30 единиц.

  7. Сталь 30 имеет лишь нисходящую, как и большинство других сортов, тенденцию: при нагреве от 20 до 700 градусов её показатель плавно снижается от 52 до 32.

  8. У стали 15 изменение температуры от 27 до 627 вызовет снижение теплопроводности с отметки в 86 до уровня в 32 Вт/м*градус.

Остальные значения соответствуют не одной сотне всевозможных сортов сталей и чугунов, но важно главное: значительное большинство сортов сплава на основе железа демонстрирует уверенную тенденцию к снижению теплопроводности с ростом температуры. Показатель не зависит от проката стали – круглый, квадратный, угловой, тавровый, рельсовый или листовой – у всех образцов распространение нагрева происходит с одной закономерностью (скоростью).

Значение в быту и производстве

Бытовое и производственное значения теплопроводности важно учесть при изготовлении теплообменников. Как правило, все теплообменники изготавливаются из металлов и их сплавов, возможно, с добавлением легирующих неметаллических присадок. У сплавов теплопроводность несколько ниже, чем у чистых металлов. Расчёт и проектирование теплообменников базируется на способности передать тепло от теплоносителя (источника) к потребителю.

Не менее важной задачей является высокоэффективный теплоотвод. Будь это охлаждение редуктора в болгарке или микропроцессора в компьютере, теплоотводчик, не обладающий необходимым минимально допустимым значением теплопроводности, не отведёт тепло в полной мере от греющихся компонентов, отчего те быстро выйдут из строя.

Теплоизоляция, наоборот, базируется на расчёте изолирующего слоя с меньшим значением теплопроводности, а не со средним или с околомаксимальным коэффициентом.

Вспененный полиэтилен, поролон, минвата задерживают тепло зимой в помещении лишь потому, что воздух в их пористой структуре обладает, как и каждый из газов в отдельности, из которых он состоит, ничтожной – по сравнению с металлами – теплопроводностью.

Не менее важная составляющая расчёта – испытания. Разрабатывая новый теплоотводящий материал либо изолятор (например, пористый полипропилен), отталкиваются от существующих значений компонентов, из которых строится основа теплообменного слоя. Задача состоит в том, чтобы пропустить или отразить обратно большую часть тепла.

Сравнение с теплопроводностью других материалов

Для сравнения, большинство сталей обладает коэффициентом теплопроводности при нуле по Цельсию, приближённо равным 63 Вт/м*градус, при увеличении температуры нагрева до нескольких сот градусов он снижается примерно в 2,5-3 раза. Алюминий, напротив, обладает восходящей тенденцией – 202-422 единиц, большинство сплавов на его основе отличаются существенной разницей в теплопроводности.

У примесного сплава с алюминием это значение колеблется в пределах 100-180. Медь демонстрирует снижение от 394 до 353 единиц при таких же температурных изменениях.

Латунные сплавы обладают при таком же температурном диапазоне значениями в 100-200 – с нисходящей тенденцией. Никель при таком же нагреве демонстрирует снижение коэффициента с 67 до 57 единиц. Никелевые сплавы с железом и цинком обладают восходящей тенденцией: 20-50 Вт/м*градус. Хромсодержащие сплавы на основе никеля позволят достичь относительно минимального значения – 12 единиц.

Комментариев нет
Информация предоставлена в справочных целях. По вопросам строительства всегда консультируйтесь со специалистом.