Предел текучести стали

Содержание
  1. Что это такое?
  2. Влияющие факторы
  3. Показатели для разных сталей
  4. Как рассчитать?
  5. Проведение испытаний на производстве

Сталь – востребованный в промышленной и строительной сферах материал, который отличается высокими эксплуатационными характеристиками и отлично подходит для возведения зданий, сооружений, мостов и других объектов.

При проектировании определенных конструкций инженеры учитывают свойства стали, среди которых – предел текучести. Стоит подробнее рассмотреть, что представляет собой нормативная характеристика, и как ее правильно рассчитать.

Что это такое?

Каждый конструктор должен знать все о механических свойствах материала, с которым работает. Предел текучести – максимально допустимая нагрузка, которая не разрушит конструкцию в момент приложения. Чем выше обозначение показателя, тем более прочным считается изделие, и тем большую нагрузку оно способно выдержать. Разрушение или серьезная деформация строительных элементов, используемых для возведения различных объектов, недопустимо. Поэтому при проектировании необходимо в обязательном порядке учитывать предел текучести, который предупреждает серьезные разрушения конструкций с возможностью появления человеческих жертв.

Если рассматривать предел текучести на практике, то он определяет, какую нагрузку можно прикладывать материалу и деталям или элементам, которые были из него изготовлены. Другими словами, предел текучести – особая нагрузка, которую способно выдержать:

  • здание;
  • сооружение;
  • механизм.

Ранее показатель определяли посредством проведения опытов, и лишь в XIX веке ученые пришли к сопромату или теории сопротивления материалов. Теперь вопрос надежности решается заложенным в материал запасом прочности. Увеличение этого показателя привело к повышению стоимости конструкций и расширению возможностей строительной и промышленной сфер.

Влияющие факторы

Свойства металла определяет тип кристаллической решетки, которая формируется исходя из процентного содержания углерода в составе. Отследить зависимость строения решетки от количества углеродных соединений можно на специальной структурной диаграмме. Например, если металл содержит 0,06% углерода, то это феррит, для которого характерна особая структура решетки – зернистая. Среди свойств материала выделяют прочность и повышенную текучесть, что позволяет ему выдерживать большие нагрузки.

По структуре стали классифицируют на:

  • ферритную;
  • перлитно- или цементитно-ферритовую;
  • цементитно-перлитовую;
  • перлитную.

Каждый металл обладает своими характеристиками и показателем текучести, определяющим максимальную несущую способность материала, при которой он не будет деформироваться или разрушаться.

Марганец и кремний

Представляют собой специальные добавки, за счет них удается поднять степень, при которой происходит раскисление материала. Дополнительно посредством применения этих элементов получается уменьшить вредное воздействие серы, и улучшить технические характеристики. Кремний, например, повышает свариваемость металла. Среднее содержание компонента составляет 0,38%. В основном добавление элемента происходит в период раскисления материала.

Сера и фосфор

Серу используют в виде хрупких сульфитов, способных изменить механические показатели сплава. Чем больше этого элемента, тем ниже:

  • пластичность;
  • текучесть;
  • вязкость.

При чрезмерных добавлениях серы свойства металла ухудшаются, он становится неустойчив к коррозии и сильному истиранию, быстро приходит в негодность. Фосфор служит для повышения показателя текучести и уменьшения пластичности сплава. Однако в больших количествах компонент также способен навредить металлу. Поэтому оптимальные значения серы и фосфора достигают соответственно 0,025% и 0,044%.

Азот и кислород

Компоненты неметаллического типа, посредством которых понижают механические свойства сплава. Большое содержание кислорода ускоряет коррозионные процессы и укорачивает срок службы изделия, также наличие подобного компонента негативно отражается на показателях пластичности и вязкости.

Азот, наоборот, способен повысить прочность материала. Однако в этом случае страдает предел текучести, а это значит, что металл не сможет вынести большие нагрузки.

Легирующие добавки

Они улучшают «физику» стали, повышая такие показатели, как текучесть, вязкость удара и прочность. Наличие подобных добавок предотвращает несвоевременные деформации и растрескивание материала. Среди распространенных компонентов:

  • вольфрам;
  • никель;
  • титан;
  • ванадий.

А также в качестве легирующей добавки используют хром.

Показатели для разных сталей

У сталей разных марок разный предел текучести. Если рассматривать варианты сортового проката размером 80 мм, то для них характерны следующие значения.

  • 20. Текучесть при температуре в 20 градусов по Цельсию достигает 245 Н/мм2. Если переводить в килограмм-силы, то показатель равен 25 кгс/мм2.
  • 30. Параметр достигает 295 Н/мм2 или 36 кгс/мм2.
  • 45. Максимальный предел текучести обладает значением 355 Н/мм2, которое достигается при температуре в 20 градусов по Цельсию после нормализации стали.

Дополнительно ГОСТ 1050-88 предусматривает для ряда сталей измененные параметры нормативного предела текучести, которые определяются исходя из требований потребителя и возможностей изготовителя. Например, образцы, вырезанные из заготовок, подвергшихся термической обработке, выдают следующие значения.

  • Сталь 30. Параметр зависит от толщины листовой стали. Прокат, размер которого не превышает 16 мм, демонстрирует предел текучести в 400 Н/мм2, от 16 до 40 мм – 355 Н/мм2, от 40 до 100 мм – от 295 Н/мм2.
  • Сталь 45. При таких же размерах показатели предела текучести составляют соответственно 490 Н/мм2, 430 Н/мм2 и 375 Н/мм
  • Сталь 40Х и 40ХН. Легированный хромистый материал, характеристики которого регулирует ГОСТ 4543-71. Прокат размером 25 мм обладает пределом текучести в 785 Н/мм2. Такого показателя удается добиться после прохождения металлом термической обработки. У стали 45Х показатель выше.
  • Сталь 09Г2С. Основные характеристики представлены в ГОСТ 5520-79. Сталь представляет конструкционный низколегированный материал, используемый для сборки сварных конструкций. Особенность марки – высокая прочность, максимальная текучесть составляет 345 Н/мм2. Чем выше температура эксплуатации материала, тем ниже показатель, и тем больше требований по использованию.
  • Сталь 3. Представляет металл с большим содержанием углерода, характеристики которого можно посмотреть в ГОСТ 380-200. Производители выпускают несколько марок такого вида стали: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, С245. У каждой марки своя текучесть, которая лежит в пределах от 195 до 235 Н/мм2.

А также существуют показатели для сталей 35, 50, 20Х, С245, 10ХСНД и других марок. Чем выше показатель, тем более высокопрочный материал и выше его устойчивость к внешним воздействиям в виде внушительных нагрузок.

Как рассчитать?

Френкель – один из известных ученых, которому приписывают гениальное допущение. Ранее под изменением материала формы понимали деформацию, которая происходит в результате воздействия на структуру материала напряжений сдвига. В рукописях прошлого столетия полагали, что для запуска пластической деформации материала достаточно сдвига одной половины изделия до точки, когда уже невозможно вернуться в первоначальное положение. Френкель первым выдвинул предположение, что у материала может быть особое строение, которое включает кристаллы или представляет полукристаллическое пространство, что свойственно, например, для:

  • металлов 30ХГСА, 5, 65Г, 17Г1С и других марок;
  • керамики;
  • полимеров.

Подобный вид строения материала говорит о существовании пространственной решетки, в узлах которой собрано определенное количество атомов. Строение решеток бывает разным и строго уникальным для каждого вещества, где также отличаются расстояния между атомами в узлах решетки. Поэтому для вызова сдвига и деформации, которая после него следует, необходимо приложить усилия для разрыва межатомных связей.

Предел текучести – особый показатель напряжения, которое необходимо для разрыва связей между атомами. Приложение подобного усилия приведет к смещению элементов относительно друг друга без возможности возвращения первоначального положения, так как силы упругости уже не будут действовать. В макромире прикладывание усилий, равных пределу текучести, приводит к развитию в материале деформаций пластического типа, способных изменить его форму и размеры. Результатом такого воздействия становится изменение формы и тела стали с последующим отказом и разрушением структуры.

Расчетное сопротивление определяют посредством испытаний стандартных образцов. По мере исследования формируется график, по которому удается узнать, где сталь «течет».

Проведение испытаний на производстве

Испытания для определения показателя текучести проводят с применением предварительно подготовленных образцов и специального оборудования. Вот основные этапы исследования.

  • Сначала цилиндрический образец, сечение которого составляет 20 мм в диаметре и 10 мм в длине, ставят в предварительно подготовленную установку.
  • Оборудование запускают, и начинают замеры, постепенно отмечая результаты в тетради или блокноте, а также отслеживая диаграмму растяжения на экране, если есть такая возможность.
  • Строят график, где наглядно отображается изменение структуры образца.
  • Фиксируют значение усилия при разрушении цилиндра.

Далее приступают к оценке графика. Как показывают результаты, небольшая нагрузка приводит к прямо пропорциональному удлинению образца. При постепенном увеличении силы растяжения заготовка достигает предела, где заканчивается пропорциональность, после чего изделие достигает точки невозврата, когда исходник не сможет вернуться к первоначальной длине при снятии нагрузки. Со временем даже без изменения нагрузки деталь продолжит меняться, пока не достигнет предела и не разрушится.

Например, недавно проведенные испытания доказали, что стальной прут Ст3 разрушается при достижении нагрузки в 2450 кг.

Комментариев нет
Информация предоставлена в справочных целях. По вопросам строительства всегда консультируйтесь со специалистом.